Speeding up R code using Rcpp and foreach packages.

Pedro Albuquerque

Universidade de Brasília

February, 8th 2017

Pedro Albuquerque

pedroa@unb.br

Universidade de Brasília

Speeding up R.

foreach package. Bootstrap.

Rcpp package. isPrime function.

Pedro Albuquerque

pedroa@unb.br

Universidade de Brasília

R is a good choice as open source and free software.

But R has some disadvantages:

- Limited memory for big datasets.
- Inefficient standard loops.

There are some solutions for both **disadvantages**, especially to speed up:

- Using apply family functions and vectorized operations.
- Using parallel processing.
- Using C++ (Rcpp package).

Pedro Albuquerque

pedroa@unb.br

Universidade de Brasília

Exercises.

R is a good choice as open source and free software. But R has some disadvantages:

- Limited memory for big datasets.
- Inefficient standard loops.

There are some solutions for both disadvantages, especially to speed up:

- Using apply family functions and vectorized operations.
- Using parallel processing.
- Using C++ (Rcpp package).

Pedro Albuquerque

pedroa@unb.br

Universidade de Brasília

Exercises.

R is a good choice as open source and free software. But R has some disadvantages:

- Limited memory for big datasets.
- Inefficient standard loops.

There are some solutions for both disadvantages, especially to speed up:

- Using apply family functions and vectorized operations.
- Using parallel processing.
- Using C++ (Rcpp package).

Exercises.

R is a good choice as open source and free software. But R has some disadvantages:

- Limited memory for big datasets.
- Inefficient standard loops.

There are some solutions for both disadvantages, especially to speed up:

- Using apply family functions and vectorized operations.
- Using parallel processing.
- Using C++ (Rcpp package).

Pedro Albuquerque

pedroa@unb.br

Universidade de Brasília

Exercises.

R is a good choice as open source and free software. But R has some disadvantages:

- Limited memory for big datasets.
- Inefficient standard loops.

There are some solutions for both disadvantages, especially to speed up:

- Using apply family functions and vectorized operations.
- Using parallel processing.
- Using C++ (Rcpp package).

Pedro Albuquerque

pedroa@unb.br

Universidade de Brasília

Exercises.

R is a good choice as open source and free software. But R has some disadvantages:

- Limited memory for big datasets.
- Inefficient standard loops.

There are some solutions for both disadvantages, especially to speed up:

- Using apply family functions and vectorized operations.
- Using parallel processing.
- Using C++ (Rcpp package).

Pedro Albuquerque

pedroa@unb.br

Universidade de Brasília

foreach package.

Suppose we are interested in estimate a variance of a complicated function of parameters, for example, the coefficient of variation:

where μ and σ are the population mean and standard deviation.

We can estimate the variance of θ using, for example, the bootstrap estimator.

Pedro Albuquerque

pedroa@unb.br

Universidade de Brasília

foreach package.

Suppose we are interested in estimate a variance of a complicated function of parameters, for example, the coefficient of variation:

$$\theta = \frac{\mu}{\sigma}$$

where μ and σ are the population mean and standard deviation.

We can estimate the variance of θ using, for example, the bootstrap estimator.

Pedro Albuquerque

pedroa@unb.br

Universidade de Brasília

foreach package.

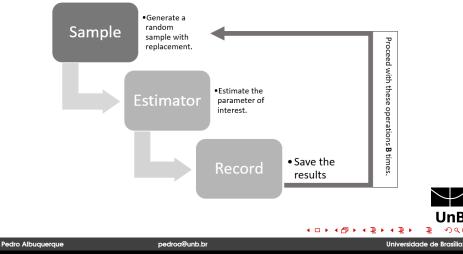
Suppose we are interested in estimate a variance of a complicated function of parameters, for example, the coefficient of variation:

$$\theta = \frac{\mu}{\sigma}$$

where μ and σ are the population mean and standard deviation.

We can estimate the variance of θ using, for example, the bootstrap estimator.

Speeding up R.


foreach package. 000000

Rcpp package.

Exercises.

Bootstrap.

Bootstrap.

Speeding up R code using Rcpp and foreach packages.

 \checkmark UnB 999

		in		

Rcpp package.

Exercises.

Bootstrap.

Bootstrap.

Bootstrap sample (b=1,B)	Estimator
1	$\widehat{ heta}_1 = \widehat{\mu}_1 / \widehat{\sigma}_1$
2	$\hat{ heta}_2 = \hat{\mu}_2 / \hat{\sigma}_2$
3	$\widehat{ heta}_3 = \widehat{\mu}_3 / \widehat{\sigma}_3$
<u>.</u>	
•	
В	$\widehat{ heta}_B = \hat{\mu}_B / \widehat{\sigma}_B$
MEAN	$\widehat{E(\theta)} = \sum \widehat{\theta}_b / B$
VARIANCE	$\widehat{V(\theta)} = \sum \left(\theta_b - \widehat{E(\theta)}\right)^2 / (B-1)$

Pedro Albuquerque

pedroa@unb.br

Universidade de Brasília

	dir		
		un	

Rcpp package.

Exercises.

Bootstrap.

Aplication.

- #Set the seed
- 2 **set**.seed(1)
- 3 #Generate fake data
- 4 data <- rnorm(n=10000, mean=10, sd=10)</pre>
- 5 #True coefficient of variation
- 6 CV. true <- 10/10
- 7 #Estimated coefficient of variation
- 8 CV. hat <- mean(data)/sd(data)</p>

Algorithm 1: Generating fake data.

The estimate is $\hat{ heta} pprox 0.9813$.

Pedro Albuquerque

pedroa@unb.br

Universidade de Brasília

Speeding up R code using Rcpp and foreach packages.

UnB

	in		

Rcpp package.

Exercises.

Bootstrap.

Aplication.

```
1 #Create the bootstrap vector
2 result <- rep(NA, 100000)
3 #Start the clock
 ptm <- proc.time()
5 for (b in 1:100000) {
    #Generate the random sample with replacement
6
    ids <- sample(x=length(data), size=length(data), replace
        =T)
    sample <- data(ids)</pre>
8
    #Calculate the CV
9
    result(b) <- mean(sample)/sd(sample)</pre>
10
 #Stop the clock - Time elapsed 20.40.
13 proc. time() – ptm
                 Alaorithm 2: Time elapsed 20 20 1 1
                                                                  Sac
```

Pedro Albuquerque

pedroa@unb.br

Universidade de Brasília

Speedina up R.						

Rcpp package.

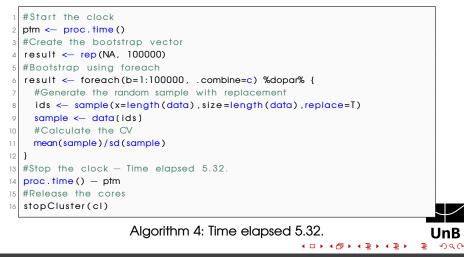
Exercises.

Bootstrap.

Aplication.

- library(foreach)
- 2 library (doParallel)
- 3 #See how many cores we have
- 4 ncl<-detectCores()</pre>
- 5 #Register the cores
- 6 cl <- makeCluster(ncl)</p>
- 7 registerDoParallel(cl)

Algorithm 3: Using foreach package.


	in		

foreach package. 00000● Rcpp package.

Exercises.

Bootstrap.

Aplication.

Pedro Albuquerque

pedroa@unb.br

Universidade de Brasília

Pedro Albuq

Rcpp package.

Exercises.

Rcpp package.

Another solution is to use the Rcpp package:

🗷 R	Studio											
File	Edit	Code	View	Plots	Session	Build	Debug	g Profile	Tools	Help		
	New Fi	le				1	•	R Script		Ctrl+Shif	t+N	
	New P	roject						R Noteboo	ok			
	Open F				Ctrl+0			R Markdov	wn			
		n with Er	coding					Shiny Web	App			
	Recent	Files					_	Text File				
	Open F	Project						C++ File				
	Open F	Project in	n New S	ession				eine				
	Recent	Projects	;			I	•	R Sweave				\searrow
												UnB
								۹ 🗆	• • 🗗	∢ ≣ ≻	∢≣⊁	≣ •Ω <
leraue				pedroa	unb.br						Universida	de de Brasília

Speeding up R code using Rcpp and foreach packages.

UnB 590

Rcpp package.

We need to compile the functions before use in R:

Pedro Albuquerque

pedroa@unb.br

Universidade de Brasília

	in		

Rcpp package. ●○○

isPrime function.

isPrime function.

Suppose we are interested in find if a number is prime or not.

```
#Create the isPrime function
  isPrime \leftarrow function(num)
    prime <- TRUE
    den <- num -1
Δ
    while(prime==TRUE & den >1){
       #Remainder of the division
6
       if (num\%den==0)
8
         prime <- FALSE
9
       }
       #Decrease the number
       den \leftarrow (den -1)
12
     return (prime)
14
  #Example isPrime(12)
```

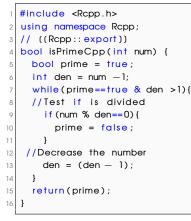
Algorithm 5: isPrime function.

Pedro Albuquerque

pedroa@unb.br

Universidade de Brasília

Speeding up R code using Rcpp and foreach packages.


UnB

Rcpp package. ○●○

isPrime function.

isPrime function.

Using the same idea with the Rcpp:

Pedro Albuquerque

pedroa@unb.br

Universidade de Brasília

4 🗆) 4 🗇) 4 🖻)

		а	ın		

Rcpp package. 000

Exercises

isPrime function

isPrime function.

You can save your functions in a *cpp* file and invoke using:

- #Rcpp library
- library (Rcpp)
- 3 #Call the functions
- sourceCpp("MyFile.cpp")
- 5 #Example
- isPrimeCpp(12)

Algorithm 6: isPrime function.

Pedro Albuquerque

pedroa@unb.br

Universidade de Brasília

	in		

- Create a Rcpp function to calculate the sample mean of a vector.
- Create a Rcpp function to calculate the k Fibonacci numbers.
- Use foreach and the bootstrap technique to estimate an arbitrary parameter function: $q(\theta) = \sqrt{\theta}/2$.

Pedro Albuquerque

pedroa@unb.br

Universidade de Brasília

Speeding up R code using Rcpp and foreach packages.

nar